

WWW.JOINESET.COM

CORE SOFTWARE

DEVELOPER

JOINESET.COM

WWW.JOINESET.COM

TASK

The task is writing program in C++, which will execute the provided EsetVm2 programs.

You'll be given:

 EsetVm2 bytecode description,

 EVM2 file format description,

 EVM2 compiler in Python,

 and sample programs written for the VM.

Program you will provide should execute .evm file. All provided correct sample programs should execute

correctly and produce expected output. Execution environment must provide a way to specify console

and binary inputs / outputs as required by instructions.

You will also have to provide source code.

ESETVM2

Architecture

VM has Harvard architecture and consist of:

 16 signed 64-bit registers

 Fixed size linear memory addressed from 0

 Call stack (used by call and ret instructions)

 Multithreaded execution unit

Arithmetic

Arithmetic operations use two's complement representation.

Instruction Set

Instructions are placed in a stream of bits, starting at logical offset 0.

Instructions use variable-length encoding. Each instruction starts with a unique bit sequence, followed by

arguments. Instructions are addressed using their bit address and are not necessary aligned to byte

boundary.

Instruction bitstream encoding

Instructions and their arguments are stored in a single bit stream. Bytes that form bitstream are encoded

in big endian – most significant bit of the byte is the first bit of stream and least significant last. For

example, given a byte sequence A2 20, it will be converted to 1010 0010 0010 0000 sequence and

http://en.wikipedia.org/wiki/Two%27s_complement

WWW.JOINESET.COM

processed in that order.

Instructions are not aligned and start right after each other – even if they don’t fill whole byte.

Supported instructions

Instruction Opcode bit

sequence

Interpretation

mov arg1, arg2 000 arg2 <- arg1

loadConst constant,

arg1

001 arg1 <- constant

add arg1, arg2, arg3 010001 arg3 <- arg1 + arg2

sub arg1, arg2, arg3 010010 arg3 <- arg1 - arg2

div arg1, arg2, arg3 010011 arg3 <- arg1 / arg2

mod arg1, arg2, arg3 010100 arg3 <- arg1 % arg2

mul arg1, arg2, arg3 010101 arg3 <- arg1 * arg2

compare arg1, arg2,

arg3

01100 arg3 <- -1 if arg1 < arg2 arg3 <- 0 if arg1 == arg2 arg3 <- 1 if

arg1 > arg2

jump address 01101 Move instruction pointer to address.

jumpEqual address,

arg1, arg2

01110 Move instruction pointer to address if arg1 == arg2.

read arg1, arg2, arg3,

arg4

10000 Read from binary input file using

arg1 – offset in input file

arg2 – number of bytes to read

arg3 – memory address to which read bytes will be stored

After read operation, arg4 receives amount of bytes actually

read – may be less than arg2, if not enough data exists in

input file.

write arg1, arg2, arg3 10001 Write to binary output file using

arg1 – offset in output file

arg2 – number of bytes to write

arg3 – memory address from which bytes will be written

If requested offset is larger than current output file size, file

should be padded with zeroes.

consoleRead arg1 10010 Read hexadecimal value from console and store to arg1

consoleWrite arg1 10011 Write arg1 to console, as hexadecimal value.

createThread address, 10100 Create a new thread, starting at address and store it’s

WWW.JOINESET.COM

arg1 identifier to arg1. New thread starts with copy of current

thread’s registers.

joinThread arg1 10101 Wait till thread identified using arg1 ends and dispose its

state. Threads will only be joined once.

hlt 10110 End current thread. If initial thread is ended, end whole

program.

sleep arg1 10111 Delay execution of current thread by arg1 milliseconds.

call address 1100 Store address of instruction after the call to internal stack and

continue execution at address.

ret 1101 Take address from internal stack and continue execution from

it.

lock arg1 1110 Lock synchronization object identified by arg1.

unlock arg1 1111 Unlock synchronization object identified by arg1.

mov arg1, arg2 000 arg2 <- arg1

Argument encoding

Three types of arguments exist, depending on the instruction used.

 Code address is encoded using 32bit unsigned integer, little endian bitwise. Code address identifies

offset in code bit stream.

 Constant argument is encoded as 64bit signed integer, little endian bitwise.

 Data access arguments are identified in table using argX. Argument is encoded using bit sequence:

Opcode Interpretation

0 xxxx Read xxxx as little endian register index, use that register’s value or store to

that register.

1 ss xxxx Read xxxx as little endian register index, read its value as memory address.

Decode ss as memory access size:

00 – one byte (byte)

01 – two bytes (word)

10 – four bytes (dword)

11 – eight bytes (qword)

If argument is used in read context, read requested amount of bytes from

memory and fill rest of register with zeros.

If argument is used in write context, store requested amount of bytes, starting

with least significant (little endian order).

WWW.JOINESET.COM

Example

Given sequence bitsequence 01000101000101010001100

1. Read bits till a valid opcode is decoded, in this example it will be add, with sequence 010001

2. Parse arguments, as described in instruction table, in add case, it will be 3 data access

arguments:

a. First argument, starts with 0, so it will be a register argument 0-1000 1000 read a little

endian is 1, so first argument is register1.

b. Second argument starts with 1, so it will be a memory argument 1-01-0100 01 is a two

byte access,

c. Third argument starts with 0 again, so it’s a register argument: 0-1100 this encodes

register3.

3. Decoded instruction is thus add register1, word[register2], register3 010001 0-1000 1-01-0100 0-

1100

Memory

Memory is linear, addressing starts from 0. Memory has byte-level addressing. Data in stored and read

from memory in little-endian format (see Endianness).

Example

Let's assume we have following bytes in memory (hex values):

aa bb cc dd 11 22 33 44 55 66 77 88 99 00 ee ff

The following program

loadConst 1, reg1

mov qword[reg1], reg0

will load value of 0x5544332211ddccbb into register reg0.

Threading model

Evm2 supports threads and thread synchronization. Each thread has its own set of registers and its own

call stack. Newly created thread starts with a copy of registers of creating thread, and empty call stack.

Initial program thread starts with all registers set to zero and empty call stack.

 Memory access is not atomic and threads must use locks to ensure predictable execution state.

 All created threads must be joined before main thread exists.

 Locks are identified using numerical index (64 bit). Thread may hold any number of locks at once.

 It is an undefined behavior to lock same lock multiple times within same thread – locks are not

guaranteed to bereentrant.

EVM2 FILE FORMAT

http://en.wikipedia.org/wiki/Endianness

WWW.JOINESET.COM

File format consists of three segments: header, code section and initial data section values.

Header

Header consist of 8 byte magic value "ESET-VM2" followed by 3 32-bit values: size of code (in

instructions), size of whole data section (in bytes) and size of initialized data size (in bytes) and can be

described using C structure like:

struct Header

{

char magic[8];

uint32_t codeSize;

uint32_t dataSize;

uint32_t
initialDataSize;

};

All values in header are stored in little endian.

Valid file format has:

 dataSize >= initialDataSize

 magic == "ESET-VM2"

 codeSize + initialDataSize + sizeof(Header) == size of file

Code

After header, instruction stream follow. Exactly codeSize bytes are specified. If instruction bit stream

length does not divide by 8, it is padded with 0 bits. For example, if bitstream would end with 10110, 000

would be added to form 10110000 and 0xB0 stored as last byte. Padding is never executed by any valid

programs. Instruction set encoding has been described in previous section.

Data section

Data section may be initialized with data loaded from file. If initialDataSize > 0, then initialDataSize bytes

are read from file and copied to the beginning

